Dr Jonathan Jeffers of Imperial College London, recently presented data from an ongoing project investigating the development of load bearing lattice structures for orthopaedic implants.
The project is funded the UK government and engineering firm Renishaw.
By incorporating a lattice, implants can provide a scaffold structure for new bone tissue to grow into. The spacing and strut thickness of the lattice can be optimised to match the stiffness of surrounding bone. It may be possible to create a strain gradient on the bone which can accelerate growth.
“The partnership between Imperial College London and Renishaw is creating really exciting data on new materials that can control the way bone repairs itself. These materials could change the way orthopaedic implants are designed in the future, and certainly provide an opportunity to improve patient outcomes by repairing the musculoskeletal system with materials that can invoke a desired response in bone”, said Jeffers.
Renishaw’s additive manufacturing systems produce implants using a process known as laser powder bed fusion (LPBF). During the process, lasers are used to melt metal powder in layers as thin as 30 microns. As the powder melts a solid product is formed. This method allows complex, customized designs to be manufactured quickly and with little waste.